最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7]

子序列

示例 1:

1
2
3
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

1
2
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

1
2
输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

f[i]表示以nums[i]结尾的最长子序列的长度。当i之前有小于nums[i]的数nums[j] 时状态转移,f[i]=Math.max(f[i],f[j]+1),答案就是f中的最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] f = new int[n];
Arrays.fill(f, 1);
int max = 1;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
f[i] = Math.max(f[i], f[j] + 1);
}
}
max = Math.max(max, f[i]);
}
return max;
}
}