岛屿数量

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 1:

1
2
3
4
5
6
7
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1

示例 2:

1
2
3
4
5
6
7
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0''1'

并查集适用于动态连通性问题

对于这道题,并查集的思路如下:

  1. 初始化并查集
    • 每个 '1'(陆地)看作一个独立的集合(岛屿)。
    • 每个 '1'idi * n + j 计算(展平成 1D 索引)。
    • 初始时,每个 '1' 自己是自己的
  2. 合并相邻的 '1'
    • 遍历 grid,当遇到 '1' 时,检查右边和下边是否也是 '1'
    • 如果是,就把它们合并(Union 操作)。
  3. 统计连通分量
    • 最终根节点的数量就是岛屿的数量!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class Solution {

class UnionFind {
int[] parent;
int count = 0;

public UnionFind(char[][] grid) {
int m = grid.length;
int n = grid[0].length;
parent = new int[m * n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
count++;
int id = i * n + j;
parent[id] = id;
}
}
}
}

//合并两个ji'he
private void union(int p, int q) {
if (find(p) != find(q)) {
int rootP = find(p);
int rootQ = find(q);
parent[rootP] = rootQ;
count--;
}
}
//找到节点的祖宗节点,带路径压缩
private int find(int p) {
if (parent[p] != p) {
parent[p] = find(parent[p]);
}
return parent[p];
}

private int getCount() {
return count;
}
}

public int numIslands(char[][] grid) {
int m = grid.length;
int n = grid[0].length;

int[] dx = new int[] { 0, 1, 0, -1 };
int[] dy = new int[] { 1, 0, -1, 0 };
UnionFind uf = new UnionFind(grid);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
for (int d = 0; d < 4; d++) {
int x = i + dx[d];
int y = j + dy[d];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
uf.union(i * n + j, x * n + y);
}
}
}
}
}
return uf.getCount();
}
}