差分矩阵
输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上 c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数 n,m,q。
接下来 n行,每行包含 m个整数,表示整数矩阵。
接下来 q行,每行包含 55 个整数 x1,y1,x2,y2,c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1≤n,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤c≤1000,
−1000≤矩阵内元素的值≤1000−1000≤矩阵内元素的值≤1000
输入样例:
1 2 3 4 5 6 7
| 3 4 3 1 2 2 1 3 2 2 1 1 1 1 1 1 1 2 2 1 1 3 2 3 2 3 1 3 4 1
|
输出样例:
二维版的差分。
同样也是二维版前缀和的逆运算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
| #include<iostream> using namespace std;
const int N = 1e3+10; int a[N][N],b[N][N];
int main(){ int n,m,q; cin>>n>>m>>q; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) cin>>a[i][j]; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) b[i][j]=a[i][j]-a[i][j-1]-a[i-1][j]+a[i-1][j-1]; while(q--){ int x1,y1,x2,y2,c; cin>>x1>>y1>>x2>>y2>>c; b[x1][y1]+=c; b[x1][y2+1]-=c; b[x2+1][y1]-=c; b[x2+1][y2+1]+=c; } for(int i=1;i<=n;i++){ for(int j=1;j<=m;j++){ a[i][j]=b[i][j]+a[i][j-1]+a[i-1][j]-a[i-1][j-1]; cout<<a[i][j]<<" "; } cout<<endl; } return 0; }
|